
13 Jun 2024
Research blog: How leukaemia cells thrive
In February 2024, a ground-breaking study was published in the esteemed journal Nature Communications (i), showcasing collaborative research efforts from a team of scientists, including three of our current and previously funded researchers Dr Sophie G. Kellaway, Dr Sandeep Potluri, and Dr Daniel J. L. Coleman. Their research focused on the pathways that lead to relapse in acute myeloid leukaemia – a significant hurdle in treatment.
Acute myeloid leukaemia (AML) is like a disruption in the orchestra of blood cell development, caused by genetic mutations. These mutations throw off the rhythm of normal growth, leading to the rapid multiplication of immature cells called blast cells. If left unchecked, these blast cells can overwhelm the body and become life-threatening.
While chemotherapy serves as the main treatment, it’s a bit like playing whack-a-mole—it can’t always catch all the leukaemia cells. Among those that escape are sneaky ones known as leukemic stem cells (LSCs). These crafty cells can lie low during treatment, only to spring back to life later on, causing a relapse.
But the big question remains: How do these cells manage to pull off their vanishing act and then reappear?
The study delves into how LSC’s in a subtype of acute myeloid leukaemia (AML), called t(8;21), restart their growth – causing relapse. The LSCs manage to cheat death by activating VEGF (vascular endothelial growth factor – this is a powerful factor that helps blood vessels grow) and IL-5 (these usually lead to maintenance of survival and functions of B cells and eosinophils – white blood cells) signalling pathways in an abnormal manner.
This finding is fascinating, it’s as if they’re flipping switches to turn on growth-promoting signals. And they don’t go solo—these pathways team up with certain proteins to coordinate the revival of LSCs while also ensuring they can keep renewing themselves.
It’s like they’ve cracked the code for eternal youth, but in a dangerous way. Understanding this intricate dance between LSCs and their signalling pathways could be the key to designing smarter treatments that target these pathways directly, aiming to cut off their supply lines and prevent leukaemia from making a comeback.
In conclusion, the recent study sheds light on the complex mechanisms underlying relapse in AML, uncovering how LSCs manage to reignite their growth. Understanding these processes is pivotal for developing targeted treatments that can intercept these pathways and halt relapse. This underscores the importance of continued support and funding for leukaemia research, as unravelling these mysteries is key to unlocking more effective therapies and ultimately stopping leukaemia in its tracks.
Discover our research blogs.
References:
(i) – Kellaway SG, Potluri S, Keane P, Blair HJ, Ames L, Worker A, Chin PS, Ptasinska A, Derevyanko PK, Adamo A, Coleman DJL, Khan N, Assi SA, Krippner-Heidenreich A, Raghavan M, Cockerill PN, Heidenreich O, Bonifer C. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun. 2024 Feb 14;15(1):1359. doi: 10.1038/s41467-024-45691-4. PMID: 38355578; PMCID: PMC10867020.
Related posts
19 December 2023
Beloved actor who beat leukaemia now fronting charity TV ad to help raise vital funds
83-year-old actor Richard Tate will appear on screens from 26th December onwards to support Leukaemia UK’s call for legacy pledges (otherwise known as gifts in Wills), after surviving leukaemia thanks…
19 June 2023
Leukaemia UK research paves the way for personalised lymphoma treatment
Despite promising trials, standard treatment for diffuse large B-cell lymphoma (DLBCL) hasn’t changed in a decade. New treatment strategies for this type of blood cancer are urgently needed. Could the…
25 August 2020
Angela Smith-Morgan to step down from her role as Co CEO of Leukaemia UK
After eight successful years with us, Angela Smith-Morgan will be stepping down from her role as Co CEO of Leukaemia UK on 3rd September.
2 October 2023
Three leading charities collaborate to fight childhood cancers
New Partnership we3can to fund research into three most common childhood cancers Today (2nd October 2023), three leading cancer charities have launched a new collaboration in order to improve the…